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Time-dependent helical waves in rotating pipe flow 
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The Navier-Stokes equations for flow in a rotating circular pipe are solved 
numerically, subject to imposing helical symmetry on the velocity field u = U(T, 
e+az, t ) .  The helical symmetry is exploited by writing the equations of motion in 
helical variables, reducing the problem to two dimensions. A limited study of the 
pipe flow is made in the parameter space of the wavenumber a,  and the axial and 
azimuthal Reynolds numbers. The steadily rotating waves previously studied by 
Toplosky & Akylas (1988), which arise from the linear instability of the basic steady 
flow, are found to undergo a series of bifurcations, through periodic to aperiodic time 
dependence. The relevance of these results to the mechanism of laminar-turbulent 
transition in a stationary pipe is discussed. 

1. Introduction 
Flow through a circular pipe provides a number of interesting and challenging 

problems in the study of fluid stability. Known as Hagen-Poiseuille flow when the 
pipe is stationary, the flow of an incompressible viscous fluid forced through a pipe 
has been known to be sensitive to instabilities since the studies of Reynolds (1883). 
Yet the nature of the transition from a laminar axisymmetric and parabolic velocity 
profile to one of localized ‘puffs’ of more complex (turbulent) motion when the axial 
Reynolds number of the flow is increased (proportional to the pressure gradient 
driving the flow) remains essentially a mystery. This is chiefly because there is no 
linear instability mechanism involved as the Reynolds number is increased. If the 
pipe is rotated about its axis, however, the initial process of transition is better 
understood, as it follows a linear instability scenario leading to wave-like structures, 
found experimentally by Nagib, Lavan & Fejer (1971). 

The purpose of the work reported here is to study the secondary instability 
processes of rotating Poiseuille flow to a class of perturbations with helical 
symmetry. Although helically symmetric flows are strictly only two-dimensional, 
their study may in turn shed more light on the fully three-dimensional instability of 
Hagen-Poiseuille flow. In this introduction we briefly summarize what is known 
about Hagen-Poiseuille flow, and then move onto the more recent work concerning 
rotating pipe flow. 

In experiments conducted by Leite (1959), pipe flow was found to be stable up to 
at  least axial Reynolds number R, = 13000, provided inlet velocity fluctuations 
were kept controlled (R, = uD/T where 0 is mean cross-sectional velocity, D is the 
pipe diameter, and 7 is the kinematic viscosity of the fluid). A number of theoretical 
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and numerical studies on linear stability also lead to the conclusion that the flow is 
stable to all infinitesimal disturbances at any axial Reynolds number. For instance, 
the stability of the flow to infinitesimal axisymmetric and non-axisymmetric 
perturbations is comprehensively studied numerically by Salwen & Grosch (1972) 
and Garg & Rouleau (1972). Therefore, the nature of instability in Hagen-Poiseuille 
flow appears to be subcritical (i.e. a threshold amplitude is required to trigger 
instability), a fact recognized by Reynolds in his seminal experiments. 

In order to investigate the stability of Hagen-Poiseuille flow to non-axisymmetric 
disturbances experimentally, Fox, Lessen & Bhat (1968) periodically perturbed the 
flow with a small vibrating spring inside the pipe, thereby locally setting up a helical 
disturbance. By monitoring the disturbance amplitude downstream of the spring as 
a function of the mass flux and the electromagnetic forcing frequency, they were able 
to map out a stability diagram in the (R,) a)-plane, where a is the wavenumber of the 
disturbance in the axial (downstream) direction. Their results indicate that fully 
developed laminar flow is stable to helical disturbances of fixed amplitude (2 % of the 
centreline velocity) for Reynolds numbers less than 2150, and that there is a ‘nose’ 
of instability, in that only a finite band of wavenumbers a are unstable for a fixed 
R,. These results are a consequence of a nonlinear instability mechanism which is 
still not understood. 

In contrast to the linear stability of stationary pipe flow, it is curious that if the 
pipe is rotated about its axis with a relatively small (but finite) angular velocity, the 
basic flow, which is now a combination of the parabolic Poiseuille flow and solid body 
rotation, is destabilized. This linear instability was first established by Pedley (1969) 
in the limit of large rotation 0, small axial wavenumber a,  and finite axial Reynolds 
number R,(R, = U, ro /q  where U,, is the centreline velocity and ro is the pipe radius), 
by studying normal mode perturbations to the parabolic base flow of the form 

R, is the Reynolds number that has been traditionally used in theoretical studies, 
and R, = R, for the undisturbed flow (in which Uo = 20).  

Mackrodt (1976) studied the stability of rotating pipe flow numerically, and found 
that the flow could be unstable with small pipe rotation for a sufficiently large axial 
Reynolds number in a given range. In this slow rotation regime the unstable waves 
also have a 4 1, as do Pedley’s fast rotation modes. For all values of the wavenumber 
and azimuthal and axial Reynolds numbers, the instability is found to occur only if 
the corresponding eigenfunction has a screw-sense (in space) which is the same as 
that of the underlying swirling laminar flow (aS2 < 0 for n > 0) ; however, waves can 
be found that rotate (in time) in either sense, as viewed in the laboratory frame 
(Cotton & Salwen 1981). Cotton & Salwen perform an extensive study of the stability 
properties of rotating pipe flow, in particular tracking several of the most unstable 
eigenvalues. For moderate Reynolds numbers the azimuthal mode n = 1 is found to 
be the most unstable. We will refer to their work frequently to guide our simulations. 

Recently Toplosky & Akylas (1988) did the first work calculating the finite- 
amplitude waves that arise from the linear instability of rotating pipe flow. These 
waves are of the form 

u = ~ ( r ,  nO+az-ct), (2) 

and are therefore steady helical waves in an appropriate rotating (or translating) 
frame. Their numerical work for the fundamental n = 1 waves indicates that the 
surface of spiral waves bifurcates supercritically from the curve of linear stability 
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lying in the (R,,R,)-plane of axial and azimuthal Reynolds numbers, i.e. the 
bifurcating waves will be stable, and the surface they occupy in Amplitude-R,-R, 
space does not bend toward the zero rotation plane, R, = 0. Their calculations (in 
which the waves were found by solving the steady three-dimensional Navier-Stokes 
equations iteratively) were performed in the slow rotation limit of a + 0 and also for 
a = 0.1. 

Toplosky & Akylas’ results suggest that if steady helical waves exist in non- 
rotating pipe Poiseuille flow, then they are not directly related to those long waves 
which exist when the pipe is rotated along its axis at high R,. This is quite possible 
as the zero rotation limit is in some sense singular, owing to the loss of the symmetry 
(8 + - 8, t)e + - tee) once the frame of reference is rotating. Such waves in a stationary 
pipe are predicted by the high-Reynolds-number asymptotic analysis of Smith & 
Bodonyi (1982). Using the techniques of nonlinear critical-layer analysis, they found 
that waves of the form (2) could be constructed, provided n = 1 and a and c are 
determined from the amplitude of the fundamental periodic mode, which is of order 
R,-i. In  addition, there is a mean flow correction of order R,-i to the parabolic base 
flow. 

Our computation of the time-dependent Navier-Stokes equations, assuming a 
helical symmetry for the velocity field 

u = v(r ,  6+az, t ) ,  (3) 
is motivated in several ways. As described above, the helical symmetry is the natural 
one where there is a three-dimensional instability of a swirling axisymmetric base 
flow. The great advantage of the helical assumption, moreover, is that it allows the 
definition of helical variables, reducing the equations of motion to two-dimensions, 
although three-dimensional effects such as vortex stretching are still permitted. 

Helical variables were introduced previously by Park, Monticello & White (1984) 
in the context of simplifying the equations of magnetohydrodynamics. In  classical 
fluid mechanics, there has been some computation of helical fluid flows, though the 
formulation has been linear and fully three-dimensional, such as for the flow between 
rotating cylinders, where spiral instability modes are found (Langford et al. 1988). On 
the theoretical side, the existence of slender helical vortex tubes in an inviscid fluid, 
which are steady in a suitable rotating frame, has been established by Adebiyi (1981). 
In  addition, at  large Reynolds numbers the Prandtl-Batchelor results concerning the 
distribution of vorticity in two-dimensional and axisymmetric steady flows can be 
extended to those with helical symmetry, using helical variables (Childress, Landman 
& Strauss 1989). 

With our helical Navier-Stokes code, we are able to recalculate the waves found 
by Toplosky & Akylas, but with an entirely distinct formulation. Using carefully 
tested and controlled numerical calculations, we have determined that the steady 
waves of rotating pipe Poiseuille flow undergo a series of bifurcations to other helical 
states. I n  particular, waves that have quasi-periodic, period-doubled, and non- 
periodic (chaotic) time dependence will be described. We are also interested in 
determining if the waves predicted by Smith & Bodonyi exist in a stationary pipe. 
Our simulations have been unable to detect such waves, as reported in Landman 

Because the axial wavenumber a is prescribed in the rotating pipe computations, 
the instabilities found may not be directly observable in the fully three-dimensional 
system. This is because, in general, other linearly unstable helical waves (with 
different a) will coexist a t  given axial and azimuthal Reynolds numbers. 

(1990). 
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Nevertheless, the behaviour of the system a t  fixed a is of intrinsic mathematical 
interest, and also should be observable in an experiment where the wavenumber of 
the disturbance introduced into a rotating pipe is controllable, as in Fox et al. (1968). 

In the following section we describe how the helical assumption is exploited to 
derive the two-dimensional equations of motion in helical variables. In $3  our 
numerical procedures are described. Our results are presented in $4. This section also 
includes a simple explanation for the origin of the time-dependent waves found, in 
terms of the interaction of multiple modes related to the linearized operator of the 
base flow. In $ 5  we mention some of the results from our direct simulations of non- 
rotating pipe flow, and discuss the ramifications of our findings to the instability of 
Hagen-Poiseuille flow. 

2. Formulation 
We seek solutions of the equations of motion of a fluid with the helical symmetry 

(3). This means that in cylindrical polar coordinates ( r ,  0,  z ) ,  the physical quantities 
are functions of r ,  q5, and time t only, where 

q5 = B f a z  

and a is a real parameter which in inversely proportional to the pitch angle of the 
helix on which r and @ are constant. The helical assumption can be exploited to 
reduce the fluid equations to two dimensions as follows, as has previously been 
performed in magnetohydrodynamics (Park et al. 1984). 

We define h as the Beltrami vector orthogonal to the unit vectors e, and 

i.e. 
rVr x Vq5 
1 + a2r2 

h =  = h2(ez -are,), 

1 
1 + a2r2 ’ 

where h2 = ___ 

The helical vector h is found to be divergence free, and thus has the properties 

V x h = -2ah2h, V - h  = 0, lhI2 = h2. 

We decompose the helical velocity and vorticity fields into helical variables such that 

v = vh+Vu x h, 

o = ch+V$ x h. 

The four scalar functions on the right-hand side are functions of ( r ,  q5, t ) ,  and the fields 
are divergence free because of the property that 

(5) h.Vg = 0 for any g = g(r ,  q5, t ) .  

Note that the helical representation can be expanded back into cylindrical polar 
coordinates and the velocity field (4a) becomes 

1 
r 

v = -uI e, - h2(arv + u,) e, + h2(v - am,) e,. 
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The kinematic condition o = V x u implies that 

4 = u, -h2c = A*u+2ah4v, 

293 

(6) 

where 

is the helical Laplacian operator. 
The aim is to find the evolution equations for the helical velocity and vorticity 

components v and 6. We consider the momentum equation of an incompressible fluid 
of density p and kinematic viscosity 9 in a frame rotating with constant angular 
velocity SZ, = SZ, e, : 

au  
at 
- + U ~ V U + ~ ~ ~ ~ X U  = -V(p /p -$2 i r2 )+qV2u ,  

v.0 = 0.  

We also consider the evolution of the vorticity by taking the curl of this equation. 
Forming the scalar product of each of these equations with h, and using (4), one finds 

av 
at 

h2- = h2h-(Vu x V V ) + T , I ( A * V + ~ ~ ~ ~ Y ) + ~ Q ,  h2(e , .Vu)-h .Vp/p ,  

h 2 - =  a6 
at 

-2ah4h*(Vux Vv)+h. (Vh2v  x Vv) -h . (Vh2CxVu)  

+qA*~-2ah2~(2ah4[+A*v)-252,h .V x (e ,  xvh) ,  ( 7 b )  

where we have used the identities (5), (6) and h-  (V x (h x V g ) )  = A*g for any helical 
variable g .  

The pressure term in (7a )  vanishes if we assume that p also maintains helical 
symmetry -however, we retain it in our study because the Poiseuille flow will be 
maintained by a pressure gradient in the z-direction, which will act as a forcing in the 
momentum equation. 

The geometry we consider is a circular pipe of radius ro, rotating along its axis of 
symmetry e, with angular velocity a,. On imposing a uniform pressure gradient 
- Q,, a viscous fluid undergoing laminar Poiseuille flow superimposed on solid-body 
rotation will maintain a parabolic velocity profile 

(8) u = Uo( 1 - r 2 / r t )  e, + rS1, e,  

as viewed in an inertial frame, with maximum centreline velocity 

Qo 4 uo = - 
4PT * 

Non-dimensionalizing all quantities with respect to ro and U,, we define 

v is the inverse of the axial Reynolds number R,, R, is the azimuthal Reynolds 
number, and 52 is the inverse Rossby number. The two dimensionless measures of the 
rotation rate are related by 

R, = QR,. (9)  
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At different times it will be convenient to use either 52 or R,, the latter being the more 
common in the literature (note that the azimuthal Reynolds number is sometimes 
given the symbol SZ elsewhere, and that non-dimensionalizations of the velocity field 
can vary in the literature). 

The non-dimensional form of the base flow becomes o = (1 -r2)e,+r52e,. In  the 
rotating frame the azimuthal component of velocity disappears, and the no-slip 
boundary conditions are satisfied a t  r = 1. 

With this scaling the equations of motion (7) can be written 

av 
at 

= J (u ,  w) + v(hV2A*w - 2aw - 4a2h4v) + [4v + ZaDu,], ( I O U )  
- 

+ vA*(hP2w+ 2ah2v) +[ -8ah4v-2ah252(w4+2ah2~4)], (lob) 

A% = w. (10c) 

The nonlinear terms above are given by 

1 
r J ( u , v )  = -(urw~-wru,), Y(u ,v )  = w(w++4ah2u4). 

The evolution equation for w has been obtained by adding ( 7 b )  to 2ah2 times (7a).  
The equations (10)  describe the helical motions of a fluid in rotating pipe flow, 

which are to be solved numerically. The no-slip boundary conditions on the wall of 
the pipe are 

w=u=u,=O a t r = l .  

The bracketed term in each equation comes from the pressure forcing and the 
Coriolis force. In  the event that there is no external pressure gradient, the former 
terms proportional to v are dropped, and the equations must be non-dimensionalized 
with respect to some other characteristic velocity (e.g. from initial conditions). We 
will assume here that the flow is always being driven by a pressure gradient, however. 

It is important to note that the Reynolds number R, is based on the pressure 
gradient, and not the mass flux. Although this distinction is irrelevant for the base 
flow, for unsteady nonlinear flows these measures of the mean flow can have different 
time dependence. 

The basic laminar state of the system, which exists for all axial and azimuthal 
Reynolds numbers, is given in the rotating frame in non-dimensional helical 
variables by 

g = - h-*(w + 2ah4w) = - 2ar2. J 
The equations (10) reduce to the usual equations of motion for two-dimensional 

flow when a = 0, with v and w the axial velocity and vorticity respectively, and u the 
stream function in polar coordinates. In the (singular) limit a --f co, (10) reduce to the 
axisymmetric equations of motion with the rescaling v" = w/a, .il = u/a ,  in which case 
ii is the Stokes stream function and v"/r is the swirl velocity. 
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3. Numerical method 
The computer code is based on a finite difference method in the radial direction, 

and a spectral method in the angular ($) direction. We assume solutions of the 
equations (10) are 27c-periodic in $ = 8 + az, and take a finite Fourier transform 

M 

v ( r ,$ )  = C +jm(r)eim+, 

and similarly for u and w. I n  the computations modes m 2 0 need only be considered 
as v-, = vm. 

We are able to compute solutions for any azimuthal wavenumber corresponding to 
an instability of mode n in (l) ,  as modes 1 < m <n- 1 will remain zero if initially 
zero. Almost all of our calculations have all modes excited, however, corresponding 
to the instability of the fundamental azimuthal mode n = 1. 

m--M 

A. 

The equations of motion in Fourier space become 

+ { - 2au(Gm + 2ah4+jm) - um2(rh)-28,}, (12a) 

+ u( - 8ah4 - 4ima2h4R, G m )  + { - ~ ( m ~ r - ~ ( h - ~ t $ ,  + 2ah28,) - 2imuccR, h2+jm}, (12b) 

with 

Lodm - m2r-26m = Gm, 

Jm and fm are the transforms of the nonlinear 
pseudospectrally (i.e. multiplication is performed in 
transforms - dealiasing is available and used to check 

terms, which are evaluated 
real space) with fast Fourier 
computations. Note that only 

6 products need be evaluated to calculate the nonlinearity, as opposed to the 11 
products required by a three-dimensional primitive variable formulation. 

The linear terms not involving derivatives in the modal equations (12) (those 
inside the curly braces) are integrated ‘exactly ’, by performing a similarity 
transformation on the solution vectors x = ($k, t$&), i.e. we write each of the modal 
equations as 

at r = kAr, where A is the complex 2 x 2 matrix of the coefficients of 6k, and t$f in 
the braced terms in (12). Letting K-lAK = A be the diagonalization of A,  we have 

Xt = Ax+f(x, t)  

This can then be discretized in time with whatever stepping scheme we choose, so 
that for example with second-order Adams-Bashforth time stepping 

X ~ + l  = Ke-AAtK-l [ X~ ++At(3f(xn, tn)-Ke-AA.tK-lf(x”-l, t”-’))]. 

Using such an explicit method with a second-order finite-difference scheme in the 
radial direction, the stability restriction on the viscous terms requires that 
6t 6 ( A T ) ~ / U ,  which is far less restrictive than the condition St 5 (AT)~/vW which 
would otherwise hold. 
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The finite differences in the radial direction are second order centred on a stretched 
grid, allowing a concentration of points in the boundary layer for high-Reynolds- 
number flows. The stretching function is that used by Chesshire & Henshaw (1989)) 
and is of the form 

where Ui(r) = $aitanhbi(r-c,) 

clusters points around point r = ci (e.g. at the boundary r = l),  and 

permits a transition to a uniform concentration of mesh points between f5 and f5+,, 

with a spacing d5 times less than where the linear term in (13) is dominant. s1 is chosen 
so that z( 1) = 1. Most often at  moderate Reynolds numbers only stretching in the 
boundary layer is used (e.g. nv = 1, n, = 0, a, = 1, b, = 4, c, = I). However, at  fast 
rotation when centre-modes appear, a stretching V ,  is also included so that a finer 
mesh is incorporated at  the origin. In the computations smoothness in the radial 
direction is checked a posteriori by plotting profiles of the individual modes or 
contours of the solution in the ( r ,  #)-plane. 

Several timestepping schemes were tested. As shown above, the second-order 
Adams-Bashforth method is used in general, with the Heun (second-order 
Runge-Kutta) method used as an initial step. Because of the similarity transform 
technique, for flows at the moderately high R, we have computed, the stability 
restriction on the timestep coming from the viscous terms is usually of the same order 
as that of the CFL stability condition (Richtmeyer & Morton 1967) from the 
convective terms, and thus the more costly and difficult-to-implement implicit 
schemes were found unnecessary. In our computations the CFL condition is 
monitored and the timestep refined accordingly. 

We illustrate the algorithm used on a uniform radial grid [rk = k /N,  k = 0.. .N+ 1). 
Given (v";, ih, d;) on 0 < k < N for each mode 0 < m < M ,  the equations (12a) and 
(12b) are stepped forward in time on the internal grid points 0 < k < N -  1. For the 
m = 0 mode a Neumann condition is used at the origin; for modes m > 0 all radial 
functions are set equal to zero for k = 0.  The elliptic equation (12c) is now solved 
subject to the Dirichlet condition on u, for each radial function Zi, on the grid points 
0 < k < N -  1. The (M+ 1)LU factorizations of the tridiagonal Laplacians are 
calculated initially and stored. On setting 4; = 6; = 0 and $;+l = 6g-l from the no- 
slip boundary conditions, the vorticity at  the boundary is updated from applying 
equation (12c) at k = N .  This completes one timestep. 

When the radial grid is stretched by a smooth function x ( r ) ,  the above procedure 
is carried out on the uniform grid {zJ, with suitable modifications made to the 
difference formulae using the functions z'(r) and r (2) (the latter is tabulated at  the 
grid points using Newton's method). 

It is worth noting here that the above numerical method was chosen after the 
initial failure of a modified finite-difference method, which made use of the fact that 
the leading-order behaviour of each Fourier-helical mode m is rm at the origin, by 
factoring this out of the computational solution. This method generated numerical 
instabilities at the origin in the high m modes, however, which were easily detected 
as the energy of these modes increased without bound. These spurious modes could 
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not be controlled despite the use of implicit timestepping schemes for the linear 
terms, or alternatively predictor-corrector methods. No instability at  the origin was 
detected in the current method, given a timestep which was sufficiently small by the 
criterion outlined above. The smoothness of the solution at the origin was frequently 
checked by plotting radial modes at a series of times throughout a simulation. 

During the computations, the following energies are monitored : 
M 

E$) = [16m(r)/2rdr, E(") = C Eg) ,  

as well as the analogous quantities for u and w. Provided log E g )  decayed linearly 
as a function of rn (i.e. exponential decay of the solution in Fourier space), the 
calculations were found to be resolved adequately in the azimuthal direction. This 
observation was tested by the addition of more modes and by dealiasing the code, 
and corroborates the conclusions of Marcus (1981) for simulations of thermal 
convection. Like Marcus, we found that complicated time-dependent behaviour 
could arise in an under-resolved simulation (indicated by an increasing tail on the 
Fourier spectrum), which then reverted to being simply periodic with the addition of 
sufficient helical modes. 

m-i 

Also the non-dimensional mass flux perturbation 

@ = 4 (B0+2ah22i0)h2rdr-1, f 
the circulation averaged over the pipe radius 

and the kinetic energy of the helical motion 

can be measured (and are equivalent to those of Toplosky & Akylas 1988), all 
vanishing for the basic axisymmetric flow (11). The mass flux perturbation provides 
the relationship between the mass flux Reynolds number R, and the pressure 
Reynolds number R,, such that 

(15) 

Pointwise quantities such as the helical velocity w(r, $) at a fixed point inside the 
pipe are also monitored. The power spectra of this and the global quantities above 
can be computed, and used as diagnostics for the character of the flow. 

The correctness of the code was tested by picking time-periodic functions wT(r, $, t )  
and uT(r,  $, t ) ,  satisfying the no-slip boundary conditions. On substituting these into 
the equations of motion, the resulting residuals (calculated analytically) were used as 
forcing functions for the equations in the numerical integration. The error of the 
forced numerical solutions could then be measured against the true solutions chosen. 
In this way the method was shown to be second order in space and time. 

Also, by integrating small perturbations to the base flow for long times, the linear 
growth/decay rate and also the phase speed of the dominant least-stable eigenmode 
were computed. This was done by plotting log E(") and also the pointwise velocity 
(normalized with the energy) versus time. In the non-rotating pipe, the values 
obtained were in good agreement (within 1 %) with the eigenvalue calculations of 

R -R D 2 -  - 0. 
Rz 
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Salwen, Cotton & Grosch (1980) for the m = 1 mode, and with Salwen & Grosch 
(1972) for m > 1. 

4. Numerical results 
In all the simulations of rotating pipe flow that we discuss, initial transients are 

ignored, and only stable solutions of the Navier-Stokes equations are studied. The 
transients omitted are typically of the length of the (fast) advective timescale for the 
helical modes, but of order 1/R, for the mean flow, given an initial condition at  a 
neighbouring solution in parameter space. 

We first compare our computations with the steady wave calculations of Toplosky 
& Akylas (1988). In  part of that study, they fixed a = 0.1, R, = -415.5 (the rotation 
necessary for instability with the least amount of axial flow), and increased R, past 
the minimum critical value of 83. Once the base flow becomes unstable, a helical 
wave is set up in the pipe, which rotates at an angular velocity f, relative to an 
observer rotating with the pipe angular velocity 52 = R,/R, (computations in our 
rotating frame thus yield pointwise velocities of period 2x/f1). However, the wave is 
of constant shape and energy, and is steady in a frame rotating at angular velocity 
52 + f,, which is not known a priori. 

In the rotating frame, all the steady waves we have computed have an angular 
velocity fi > 0 (for 52 < 0). This observation is corroborated by the discussion of 
Cotton & Salwen (1981) on the phase speed of helical waves from linear theory. The 
growth rate (i is their paper is related to fl by I m g  = R,(fl+52) (allowing for a 
difference in sign for a and 52 in their study). I n  the inertial frame the solutions are 
a periodic function of (8-52t -ac,t) +ax, so that fi = ac,. Cotton & Salwen find that 
0 < c, < 1 for all the linearly unstable modes they computed. This result corresponds 
to the existence of a critical layer at rc = (1 -c,.)i in the inviscid stability equations, 
and puts a bound on the angular velocity (phase speed) of such waves. 

Thus, in the rotating frame, a simple helical wave rotates counter to the direction 
of rotation cf, l2 < 0) ; however, in a fixed frame, the velocity fi + 52 can have either 
sign, and as observed by Cotton & Salwen, the wave rotation is counter to the swirl 
in the slow rotation regime, and with the swirl in the fast rotation regime. 

We computed the averaged quantities mass flux, energy and circulation of the 
(temporally stable) solutions a t  various R, between 83 and 600. For axial Reynolds 
number less than 300 there is rough agreement between our results and those of 
Toplosky & Akylas. For example, a t  R, = 300, we quote our results with Toplosky 
& Akylas’s in parentheses : 

Q, = -0.167 (-0.183), r = -4.62 x (5 x lop3), 
E = 3.41 x 10-3 (4.5 x 10-3). 

The difference in sign in the circulation integral appears to be an error, as the 
helical wave calculated depletes the vorticity of the solid-body rotation, as it does the 
mass flux. The explanation for the quantitative discrepancy probably lies in the 
disclaimer made by Toplosky & Akylas themselves : inadequate resolution due to 
only 4 Fourier modes (i.e. M = 4). We found that a t  R, = 300, M = 7 resulted in an 
inverted energy spectrum leading to inflated values of the averaged quantities above. 
The problem was alleviated by taking M = 15. Radial resolution used was N = 50, 
with boundary-layer stretching to reduce the vorticity gradient a t  r = 1. 

Steady wave profiles are shown in figures 1 and 2 for the above values R, = -415.5 
and a = 0.1, a t  R, = 100 and R, = 300 respectively. In this regime global quantities 
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FIGURE 1. Contours of the steady rotating helical vorticity (, R, = 100, R, = -415.5, a = 0.1. 
-, positive values ; ---, negative values. 

FIGURE 2. Contours of the steady rotating wave, R, = 300, R, = -415.5, a = 0.1. (a) Vorticity 
5. ( b )  Helical velocity v. ( c )  w with the mean flow subtracted out (v-v,). 
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FIQURE 3. Mean axial flow profiles for the steady waves of figures 1 and 2. The solid line (i) is 
the parabolic profile, stable up to R, = 83; (ii) R, = 100; (iii) R, = 300. 

such as the energy and mass flux of the waves are steady in time, whereas the 
velocity at a fixed station in the pipe will be simply periodic (except at  the 
origin, where it is steady). Figures 1 and 2(a )  are contours of the helical vorticity 
[ ( T ,  4) (0 < T < 1,0 < 4 < 2 x )  at the two different axial Reynolds numbers. Such 
plots can be thought of as a cross-section of the flow in the pipe at a fixed station in z .  
Figure 2 ( b )  shows contours of the helical velocity W ( T ,  r$), and ( c )  plots with the 
mean flow removed. As a is relatively small, the direction of these quantities is out 
of the plane with a slight clockwise tilt. The waves rotate steadily in the rotating 
frame, with a period (2n/f i )  of 96 and 104 respectively, which is slow compared to the 
pipe rotation time of 1.51 and 4.54 at these different values of R,. 

We observe that the waves consist of an oppositely signed helical vortex pair, in 
comparison with the base flow for which 6 is everywhere negative. This generation 
of positive vorticity is responsible for the property that the vortex tends to rotate 
slower than the underlying base flow of solid-body rotation. With increased axial 
flow the steady wave becomes more nonlinear, and departs from the mostly m = 1 
symmetric perturbation seen at the lower Reynolds number. 

Looking now at the contours of the helical velocity v ,  the axisymmetric base flow 
has been considerably distorted, and when the underlying time-independent mean 
flow is subtracted out (figure 2c), we see that a strong jet of fluid moving counter to 
the base Poiseuille flow has been set up, thus depleting the axial flow. To illustrate 
this explicitly, the mean axial flow h*(w,,-aaru;) is plotted against T in figure 3. At 
R, = 300, the mass flux is depleted 17 YO and the mean axial velocity has developed 
an inflexion point and is quite flat. Although the flow is a long way from being 
turbulent, it is interesting that these are characteristics of the profile observed in 
turbulent pipe flow (Wygnanski & Champagne 1973). 

By increasing R, from 300 to  400, a qualitative change from the steady waves of 
Toplosky & Akylas occurs in our simulations. The steady rotating wave undergoes 
an instability, such that the energy goes from being steady to simply periodic in time, 
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FIGURE 4. Time periodic global quantities for the wave at R, = 600, R, = -416.5, a = 0.1. (a) Mass 
flux perturbation. (b) Kinetic energy -, parallel and ---, perpendicular to the helical direction. 

and the pointwise velocity changes to quasi-periodic with two independent 
frequencies. This indicates the presence of a second Hopf bifurcation leading to two 
oscillatory modes (the initial bifurcation from the parabolic base flow to a rotating 
wave can also be considered to be Hopf bifurcation by an observer in the inertial 
frame). 

Figures 4 plot the time-periodic mass flux and kinetic energy of the waves over two 
of these cycles of period 245. In figure 4 ( b )  the energy, defined in (14), has been split 
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FIGURE 5. Mean axial flow profiles a t  various times over one cycle for the wave at  R, = 600, 
R, = -415.5, u = 0.1. The profile for the parabolic basic flow is also shown. 

into its two components, one parallel (depending only on v) and the other 
perpendicular (depending on u) to the helical direction h. We observe that most of 
the kinetic energy resides in the direction of the helix, and there is no apparent 
transfer of energy between the two directions. The mean flow profile in figure 5 is 
fairly flat as it was in the steady regime, although now it fluctuates periodically in 
time as shown. 

We have been able to make colour animations of such flows, which aid in 
identifying the vortex dynamics involved, as described below. In figure 6, the 
contours of helical vorticity are plotted a t  various times within a cycle of the 
oscillation, a t  R, = 600. The four plots have been reoriented in order that the 
vorticity dynamics can be elucidated more clearly. The simplest state is that of a pair 
of vortices, shown at time 0. By time 70 the positive vortex has elongated, and as 
the new extremity of this vortex approaches the wall, there is an enhancement of 
vorticity due to vortex stretching. This part of the vortex becomes dominant, and a t  
times 100 and 130 we observe a folding action of the positive vorticity and this new 
vortex annihilates a weaker vortex pair. By time 150 the configuration is again that 
of a single vortex pair, slightly different from that a t  time 0. A similar, though less 
dramatic, stretching, folding, and annihilation event takes place from time 150 to 
245, when the original flow is again recovered (though in a different orientation 
within the pipe). Throughout this process the negative vortical structures appear to 
play only a passive role, with the main negative vortex remaining almost constant 
in shape. 

We have not computed a t  axial Reynolds numbers greater than 600 for a = 0.1, 
R, = -415.5, owing to the prohibitive expense of such calculations, caused by the 
relatively large advective timescales a t  small a and long transients. We did, 
however, check that in the slow rotation regime the bifurcation to steady waves is 
supercritical, as found by Toplosky & Akylas, by evolving small perturbations to the 
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FIQURE 6. Contours of helical vorticity 6, at times (a) t = 0, ( b )  t = 70, (c) t = 100, (d )  t = 130; 
R, = 600, R, = -415.5, a = 0.1. The period of one cycle is 245. Each contour plot has been rotated 
to ease identification of the vortical structures. 

base flow at R, = 1000, a = 0.1 for rotation rates in the neighbourhood of the 
bifurcation point RQ = -28. Such a result is important as it runs contrary to the 
conjecture that waves in a slowly rotating pipe have continuations to helical 
equilibria in Hagen-Poiseuille flow (in fact Toplosky & Akylas find that the 
bifurcation becomes more supercritical as R, increases). 

The second set of computations we describe was performed with a = 1.0 and 
SZ = -0.5, at an increasing sequence of R,. In  this case we can think of fixing the 
wavenumber of the disturbances and reducing the viscosity of the fluid, instead of 
increasing the centreline velocity (as in the case when R, is fixed). In figure 7 the 
marginal stability curves are shown in the (R,, O)-plane for a = 1 and the azimuthal 
index n = 1, using the data from figure 12 of Cotton & Salwen (1981) in the (R,,&)- 
plane and the relationship (9). As R, is increased we see that it is possible to 
destabilize more than one mode from the linear theory. Furthermore, the region of 
parameter space illustrated lies close to a point where a degenerate bifurcation occurs 
(when the bounded region of two unstable modes disappears at  IR x -0.5, a x 1.1). 
The amplitude equations at this double Hopf bifurcation were studied by Mahalov 
& Leibovich (1988), who indicate that complex dynamical behaviour can be expected 
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FIQURE 7. Neutral stability curves for the lowest eigenmodes of rotating Poiseuille flow, n = 1, 
a = 1.0. The numbers refer to the number of unstable modes in each region (data from Cotton & 
Salwen 1981). Simulations were performed along the line R = -0.5. 
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FIQURE 8. Bifurcation diagram for helical waves with R = -0.5, 01 = 1.0. -, steady rotating 
waves ; ---, the envelope of the amplitude of waves with time-periodic energy. 

near this point in parameter space. Figure 7 also illustrates the property that the pipe 
rotation rate D required to destabilize the flow tends to zero like R;i as the axial flow 
is increased. 

Figure 8 is a bifurcation diagram plotting the energy E(") versus R, for the helical 
waves we have computed with our fully nonlinear time-dependent code, along the 
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FIQURE 9. Time traces of the mass flux perturbation as the pitch of the helical waves is increased, 
RE = 500, f2 = -0.5. (a) a = 0.3, after one Hopf bifurcation. ( b )  a = 0.275, after the first period 
doubling. (c) a = 0.265, soon after two further doublings. (d )  a = 0.25, non-periodic regime. Note 
that the timescales on the graphs differ, and that transients are not shown. 
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ray on which D = -0.5, a = 1. Starting from R, = 107, the basic flow becomes 
unstable supercritically and a steady helical wave is set up, rotating at  an angular 
velocity f, > 0, analogous to that already described. At R, = 580, we once again find 
an instability to a two-periodic velocity field in the pipe. The unsteady waves persist 
past R, = 1000, but by R, = 1500 singly periodic flow is once again achieved. As R, is 
increased further, the helical waves decrease in amplitude and appear to be evolved 
from linearly unstable centre modes; we have not studied this regime com- 
prehensively owing to the sensitivity of the calculations at high Reynolds numbers. 

The above bifurcation phenomena is seen to have a simple explanation in terms of 
the known linear stability results for rotating pipe flow. From figure 7 we see that 
there are two unstable eigenmodes for D = -0.5 for R, in the interval (560, 1100). 
Because the underlying mean flow is not significantly modified by the nonlinear 
waves in this parameter regime (for example, the mass flux is at  most depleted 4%), 
the linear stability theory for the parabolic base flow remains relevant. This results 
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in the window of secondary instability, in which two independent helical modes 
oscillate at frequencies fi and fi. By computing power spectra of the pointwise 
velocity w(r = 0.5, 4 = 0) in the quasi-periodic region, two peaks at independent 
frequencies fi and fi are easily identified, the peak at fi growing in amplitude as R, 
is increased past the secondary bifurcation point. Linear eigenvalue computations 
confirm that these frequencies are close to those of the linearly unstable eigenmodes. 
The energy of the helical wave that results is time periodic, as the wave changes 
shape periodically with frequency f2 - fi, on observing it in a frame rotating a t  Q + f,. 
A power spectrum of the mass flux or the energy therefore exhibits a single main peak 
at  fi - f,, plus its harmonics. 

We are thus provided with a rough qualitative explanation of the a = 0.1 results 
presented above (i.e. the existence of two independent unstable modes results in 
quasi-periodicity of the velocity field). However, owing to the higher degree of 
nonlinearity in that case, the secondary instability occurs at an axial Reynolds 
number of about 350, which is considerably less than the value 1200 which can be 
read off from the linear stability curves of Cotton & Salwen (1981). 

The last set of computations we report were performed a t  fixed rotation and axial 
pressure gradient, whilst varying the pitch of the helices (i.e. the physical parameters 
are fixed, and the wavenumber of the flow disturbance is varied). With R, = 500 and 
B = -0.5, the basic flow is linearly unstable for 0.14 < a < 1.2. For a between 1.2 and 
0.35 the flow consists of a steady rotating wave. As a: is decreased from 0.35 to 0.30, 
a secondary Hopf bifurcation occurs leading to quasi-periodic flow, with simply 
periodic mass flux and energy (figure 9a). A new bifurcation has occurred by 
a = 0.275, which is found to be a period doubling bifurcation (figure 9 b) .  A cascade of 
period doublings appears as a is decreased further ; by a = 0.265 another two steps 
have occurred in the cascade (figure 9c). Although the data collected for the 
bifurcation points is sparse, comparison with the universal scaling for period- 
doubling bifurcations of Feigenbaum (1979) is in accordance with the theory. 

At a = 0.25 the flow appears to display non-periodic, or chaotic time dependence 
(figure 9d). This is diagnosed by computing the power spectrum of the energy or mass 
flux, which become broadband. Figure 10 displays some of the power spectra for 
these flows. Figure lO(a) corresponds to the behaviour of the mass flux after one 
period doubling, with one primary peak and its harmonics. Figures 10(b)  and l O ( c )  
are the spectra for the mass flux, and also a pointwise velocity measurement, in the 
chaotic regime. The velocity spectrum, like that for the mass flux, is broadband, but 
displays one primary peak, corresponding to the single convective fast timescale at 
which the vortex system rotates within the pipe. On viewing the actual vorticity 
dynamics for the non-periodic flow, one again sees similar phenomena as described 
in the energy-periodic regime above ; however, the generation of a secondary positive 
vortex occurs irregularly in time. It is worth noting that for the physical parameters 
chosen, this behaviour occurs a t  wavenumbers whose growth rates are smaller than 
at  a = 0.51, where the maximum instability occurs according to linear theory, and 
where disturbances saturate to a steady rotating wave. The above set of 
computations was done with resolution M = 15, N = 50 (with a mild boundary layer 
stretching of a, = I, b, = 3), which resolved the gradients of vorticity and produced 
a well-decaying energy spectrum. 
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5. Discussion 
We have presented the results of a direct simulation of the Navier-Stokes 

equations for rotating pipe Poiseuille flow, under the constraint that the solutions 
possess helical symmetry. The primary nonlinear steady rotating waves may become 
unstable through a Hopf bifurcation as the parameters R,, R,, or a are varied, 
leading to a quasi-periodic velocity field, but with simply periodic energy and mass 
flux. These secondary waves may undergo a futher series of bifurcations, which lead 
to chaotic temporal evolution. For the set of numerical computations we performed, 
the onset of chaos occurs through a period-doubling cascade. This bifurcation 
scenario has also been found in simulations of two-dimensional double-diffusive 
convection (Knobloch et al. 1986). 

Our results have been confined to solutions of a single helical pitch, whereas in 
general the linear instability of a rotating pipe flow will occur for a continuum of 
helical waves. For instance, the computations we have performed for the linear and 
secondary instability of a = 1 waves occurs when unstable helical waves a t  smaller 
a already exist (Cotton & Salwen 1981). The actual fully three-dimensional nonlinear 
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development of a rotating pipe flow is yet to be elucidated, although it is expected 
that large-scale instability will dominate in an uncontrolled experiment. The 
bifurcation results presented are of mathematical interest, however, and should be 
realizable in a controlled experiment. 

A series of bifurcations leading to chaotic time dependence for streamwise periodic 
waves in two-dimensional plane Poiseuille flow has also been described by Jimknez 
(1990). In that geometry, however, the transition to temporal irregularity was 
through a series of Hopf bifurcations, with three-periodic flow being the precursor of 
chaos. As this and the period-doubling bifurcation scenario are ubiquitous in many 
nonlinear dynamical systems, we might also expect to find other routes to chaos in 
the spatially periodic helical wave system in different regimes of parameter space. In 
particular, it was demonstrated here that the flow became quasi-periodic owing to 
the simultaneous existence of two unstable eigenmodes of the system ; thus complex 
oscillatory motion quite possibly arises as more modes interact with each other. 

We now discuss the stability of Hagen-Poiseuille (non-rotating pipe) flow. Our 
simulations with D = 0 and non-axisymmetric initial conditions suggest that stable 
helical waves cannot be supported by the flow, a t  least up to axial Reynolds numbers 
R, of 4000 at order one axial wavenumbers a. These results are reported on further 
in Landman (1990). The analogous null result was reported by Patera & Orszag 
(1981), who sought axisymmetric equilibria in pipe flow up to R, = 4000. 

In agreement with the experimental results of Leite (1959), our simulations in a 
non-rotating pipe show that the non-axisymmetric components of an initial 
disturbance set up in fully developed pipe flow decay on a fast advective timescale, 
in comparison with the axisymmetric components which decay viscously. Thus, in 
accordance with the steady work of Toplosky & Akylas (1988), we are unable to 
corroborate the assertion of Smith & Bodonyi (1982) that steady helical waves exist 
at high R,. Our results do not preclude the existence of such waves, however, as they 
may be temporally unstable, exist at higher R,, or may be accessible from only a 
limited class of initial conditions. 

Even so, it appears that the nonlinear instabilities observed experimentally at  
Reynolds numbers R, of about 2000 are not a direct consequence of the existence of 
helically stable two-dimensional equilibria. This claim takes into account that the 
experimental Reynolds number R, is based on mass flux, which would correspond to 
a pressure Reynolds number R, fractionally higher than 2000, through the 
relationship of (15). 

Nevertheless, in the light of the stability properties of rotating pipe flow, an 
explanation for the onset of instabilities in a non-rotating pipe may be furnished. 
This was suggested by Mackrodt (1976), who considered that in an experiment the 
residual angular momentum of the inlet flow would result in a rotating core of fluid 
in the pipe, separated from the walls by a boundary layer. In addition, Mackrodt 
pointed out that only minimal rotation is required in order to destabilize Poiseuille 
flow at high axial Reynolds number. This line of investigation is taken in Landman 
(1990), where the linear stability of a swirling Poiseuille flow satisfying the no-slip 
condition on a stationary pipe is studied. It is found that there is a minimum critical 
core swirl of R, w -30, which is fairly insensitive to the actual details of the swirl 
profile and holds for wavenumbers a up to O( 1) (the critical R, for rotating pipe flow 
is -28). 

Given that a residual core of fluid in solid-body rotation may be the appropriate 
mechanism for observed pipe-flow transition, our results on rotating helical waves 
might account for some of the temporal irregularity of such flows. In order to 
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quantify the effect of a swirling core on fully nonlinear Hagen-Poiseuille flow, we 
have modelled this flow by forcing the fluid equations so that the basic flow is one of 
core swirl superposed on Poiseuille flow (Landman 1990). We have observed that not 
only do instabilities exist similar to the solid-body swirl case studied here, but 
hysteresis (multiple stable states) is also possible. This type of behaviour is well 
known for the geometry of flow between rotating cylinders, in which helical waves 
can also be observed (Andereck, Liu & Swinney 1986). 

The presence of core rotation remains a potentially attractive means of explaining 
the generation of equilibrium puffs associated with laminar-turbulent transition at 
axial Reynolds numbers R, of approximately 2000 in Hagen-Poiseuille flow 
(Wygnanski & Champagne 1973). In fact, Bandyopadhyay (1986), in a striking 
experimental study of the structure of the puff at  R,  = 2200, found a laminar helical 
motion within the plug of fluid in the upstream region of the puff. 

An analogy to two-dimensional plane Poiseuille flow is therefore suggested. 
Computing the flow between parallel plates over a large streamwise domain, solitary 
wave modulations of the underlying nonlinear waves have been found (Jimenez, 
1990), leading to two-dimensional localized travelling states. Although the basic 
periodic nonlinear waves are stable to superharmonic perturbations, long-wave 
instabilities are responsible for generating such solitary waves at Reynolds numbers 
where the undisturbed parabolic flow is also stable. Similarly, one can speculate that 
a train of helical waves might undergo a solitary wave modulation over a large 
domain. A fully three-dimensional instability of the helical motion might then 
generate the turbulence associated with the downstream portion of an equilibrium 
puff. Such a secondary three-dimensional instability of a helical wave equilibrium or 
quasi-equilibrium would thus be analogous to the secondary instabilities of two- 
dimensional equilibria in planar shear flows (Bayly, Orszag & Herbert 1988). 

Without doubt one of the primary goals of any theory of laminar-turbulent 
transition in Hagen-Poiseuille flow must be the prediction of the critical Reynolds 
number R, of close to 2000. Yet it appears that further investigation is warranted 
despite a century since Reynolds’ discoveries. 
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